Abstract

Broadband supercontinuum (SC) fiber sources covering the mid-IR range have many significant applications, largely due to their compactness, reliability, and ease of use. However, most of the existing SC fiber sources cannot boast of either high reliability or a wide bandwidth. Thus, supercontinuum sources based on silica fibers are robust, but are not capable of generating SC in the mid-IR range. Sources based on soft glasses (tellurite, chalcogenide, etc.) generate broadband SC in the mid-IR range but are not used commercially, due to the poor mechanical and chemical characteristics of such fibers. In this work, we propose a new approach consisting of cascade generation of a supercontinuum sequentially in a silica photonic crystal fiber (PCF) and a germanate fiber. Using a standard ytterbium chirped-pulse amplification (CPA) laser system for pumping, we have demonstrated a supercontinuum in the range of 450–2950 nm in PCF and germanate fiber firmly connected by a standard fusion splicing technique. Further optimization of the cascade pump will make it possible to create a compact and reliable all-fiber SC source from the visible to mid-IR range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.