Abstract

To study the room-temperature stable defects induced by electron irradiation, commercial borosilicate glasses were irradiated by 1.2 MeV electrons and then ultraviolet (UV) optical absorption (OA) spectra were measured. Two characteristic bands were revealed before irradiation, and they were attributed to silicon dangling bond (E’-center) and Fe3+ species, respectively. The existence of Fe3+ was confirmed by electron paramagnetic resonance (EPR) measurements. After irradiation, the absorption spectra revealed irradiation-induced changes, while the content of E’-center did not change in the deep ultraviolet (DUV) region. The slightly reduced OA spectra at 4.9 eV was supposed to transform Fe3+ species to Fe2+ species and this transformation leads to the appearance of 4.3 eV OA band. By calculating intensity variation, the transformation of Fe was estimated to be about 5% and the optical absorption cross section of Fe2+ species is calculated to be 2.2 times larger than that of Fe3+ species. Peroxy linkage (POL, ≡Si–O–O–Si≡), which results in a 3.7 eV OA band, is speculated not to be from Si–O bond break but from Si–O–B bond, Si–O–Al bond, or Si–O–Na bond break. The co-presence defect with POL is probably responsible for 2.9-eV OA band.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call