Abstract

Inflation creates perturbations for the large scale structures in the universe, but it also dilutes everything. Therefore it is pertinent that the end of inflation must explain how to excite the Standard Model dof along with the dark matter. In this paper we will briefly discuss the role of visible sector inflaton candidates which are embedded within the Minimal Supersymmetric Standard Model (MSSM) and discuss their merit on how well they match the current data from the Planck. Since the inflaton carries the Standard Model charges their decay naturally produces all the relevant dof with no dark/hidden sector radiation and no isocurvature fluctuations. We will first discuss a single supersymmetric flat direction model of inflation and demonstrate what parameter space is allowed by the Planck and the LHC. We will also consider where the perturbations are created by another light field which decays after inflation, known as a curvaton. The late decay of the curvaton can create observable non-Gaussianity. In the end we will discuss the role of a spectator field whose origin may not lie within the visible sector physics, but its sheer presence during inflation can still create all the perturbations responsible for the large scale structures including possible non-Gaussianity, while the inflaton is embedded within the visible sector which creates all the relevant matter including dark matter, but no dark radiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.