Abstract

Reflectance spectroscopy can be used to nondestructively characterize materials for a wide range of applications. In this study, visible-near infrared reflectance spectroscopy (VNIR) was evaluated for prediction of diverse soil properties related to four different soil series of the Entisol soil group within a single field in northern Turkey. Soil samples were collected from 512 locations in a 25 × 25 m sampling grid over a 32 ha (800 × 400 m) area. Air-dried soil samples were scanned at 1 nm resolution from 350 to 2500 nm, and calibrations between soil physical and chemical properties and reflectance spectra were developed using cross-validation under partial least squares regression (PLSR) and multivariate adaptive regression splines (MARS). Raw reflectance and first derivative reflectance data were used separately and combined for all samples in the data set. Data were additionally divided into two random subsets of 70 and 30% of the full data, which were each used for calibration and validation. Overall, MARS provided better predictions when under cross-validation. However, PLSR and MARS results were comparable in terms of prediction accuracy when using separate data sets for calibration and validation. No improvement was obtained by combining first derivative and raw data. Strongest correlations were obtained with exchangeable Ca and Mg, cation exchange capacity, and organic matter, clay, sand, and CaCO 3 contents. When soil data were classified into groups, VNIR spectroscopy estimated class memberships well, especially for soil texture. In conclusion, VNIR spectroscopy was variably successful in estimating soil properties at the field scale, and showed potential for substituting laboratory analyses or providing inexpensive co-variable data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call