Abstract

Covalent organic frameworks (COFs) are a class of promising photocatalysts for conversing light energy into chemical energy. Based on the tunable building blocks, COFs can be well-designed as photocatalyst for mediating reversible addition-fragmentation chain-transfer (RAFT) polymerization. Herein, 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) and 2,2″-bipyridine-5,5″-diamine (Bpy) are chosen to construct imine-based TFPPy-Bpy-COFs for catalyzing RAFT polymerization of methacrylates under white light irradiation. The well-defined polymers with precise molecular weight and narrow molecular weight distribution are obtained. The switch on/off light experiments suggest excellent temporal control toward RAFT polymerization system and the chain-extension reaction indicates high chain-end fidelity of macro-initiators. Mechanism study clarifies that the electron transfer between excited state of TFPPy-Bpy-COFs and RAFT agent can form living radicals to mediate polymerization. This methodology provides a novel platform for reversible-deactivation radical polymerization using COFs as heterogeneous catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.