Abstract

Nanocomposites consisting of titania nanoparticles and metallic platinum were prepared via a soft chemical reduction method. The detailed structural, compositional, and optical characterization and physicochemical properties of the obtained products were analyzed by X-ray diffraction, nitrogen adsorption, Raman spectroscopy, UV–Vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, and FT-IR spectroscopy techniques. Employing photodegradation of rhodamine B as the model reaction, we found that the as-prepared Pt/TiO2 nanocomposite showed an excellent photocatalytic oxidation activity under visible light irradiation. On the basis of these results, the intrinsic mechanism of visible light-induced photocatalytic oxidation of organic compounds on the platinized titania is proposed and discussed. The superior visible light-driven photocatalytic efficiency of the Pt/TiO2 nanocomposite photocatalyst can be ascribed to the high efficiency of charge-pair separation due to the presence of deposited Pt serving as electron sinks to retard the rapid e−–h+ couple recombination; the good photoabsorption capacity in the visible light region; and the higher concentration of surface hydroxyl groups, which are able to effectively scavenge photogenerated valence band holes. Accumulation of the holes at the catalyst surface increases the probability of the formation of OH· as a reactive species that readily oxidizes the organic dye molecule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.