Abstract

AbstractA novel visible light‐induced living surface grafting polymerization was developed by a strategy in which isopropyl thioxanthone (ITX) was first photoreduced under UV light and sequentially coupled onto the surface of polymeric substrates, and the produced isopropyl thioxanthone‐semipinacol (ITXSP) “dormant” groups were subsequently reactivated under visible light to initiate a surface grafting polymerization. By using glycidyl methacrylate (GMA) and low‐density polyethylene (LDPE) films as models, a “living” surface grafting polymerization initiated by ITXSP under visible light at room temperature was observed. Both the surface grafting chain length versus grafting conversion of monomer and the grafting polymerization rate versus monomer concentration demonstrated a linear dependence, which is in accord with the known characteristics of living polymerization. The livingness rendered it possible to accurately control the thickness of the grafted layer by simply altering the irradiation time. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Phys, 2009

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call