Abstract

Background: Green and sustainable method for the oxidation of aldehydes into acids is now in demand as carboxylic acids are important and versatile intermediates. In this context, visible LED light-promoted aerial oxidation can be efficient and greener protocol. Objective: Herein, we have demonstrated a visible LED light-promoted efficient and greener protocol for the aerial oxidation of aromatic aldehydes into corresponding acids in the absence of any additives, base, catalyst, and oxidant. Methods: The oxidation of aromatic aldehydes was irradiated by an LED light at room temperature under an open atmosphere, monitored by TLC. The rate of oxidation was also monitored using different LED lights by UV-Vis studies. The products were purified by column chromatography using silica gel, and the mixture of ethyl acetate/petroleum ether as an eluting solvent and the pure products were confirmed by their melting point determination and NMR spectroscopic analysis. Results: The aldehydes were successfully converted into corresponding acids with good isolated yields (60-90 %) by this protocol, where blue LED light (l ~ 490 nm) was found to be the best choice. Conclusion: The present protocol of aerial oxidation of aromatic aldehydes into corresponding acids under visible LED light has been carried out in the absence of catalyst, oxidant, base, and any other additives. The higher isolated yields, no byproduct formation, and neat reaction conditions are the major advantages of the protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.