Abstract

In the present study, BiVO4/CuCr2O4 nanocomposites synthesized via a chemical route are applied as a photocatalyst for the degradation of methylene blue (MB) dye. The photocatalytic activity results indicated a substantial degradation of MB dye by ~90% over the surface of nanocomposite catalyst under visible light illumination. The nanocomposite showed a photocatalytic activity for MB dye degradation which is three times higher compared to that of BiVO4. This has been attributed to photogenerated electron-hole pair charge separation. The prepared photocatalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis absorption and photoluminescence spectroscopy. Furthermore, an oxidizing reagent such as H2O2 was added to the photocatalytic system, which may act as an alternative electron scavenger and resulting in a notably enhanced rate of pollutant destruction. In addition, the effect of polyaniline has also been studied by synthesizing an organic/inorganic hybrid material (BiVO4/CuCr2O4/PANI). It has been observed that 95% photodegradation of organic dye takes place on the nanocomposite surface with visible light. A possible mechanism explaining the origin of enhanced performance of nanocomposite and nanohybrid is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call