Abstract

Widespread deployment of metal–organic frameworks (MOFs) for CO2 capture remains challenging due to the great energy‐penalty associated with their regeneration. To overcome this challenge, a new type of photodynamic carbon capture material synthesized by incorporating Ag nanocrystals with UiO‐66 (Ag/UiO‐66) framework is presented. Upon the irradiation of visible light, Ag nanocrystals within the composites serve as “nanoheaters” to convert photon energy into thermal energy locally. Driven by such light‐induced localized heat (LLH), the adsorbed CO2 within MOFs is remotely released. The CO2 desorption capacity of such Ag/UiO‐66 composites can be readily regulated by control over their Ag contents and the applied light intensity. Up to 90.5% of CO2 desorption is achieved under the investigated conditions. Distinct from the traditional light‐responsive MOFs for gas trigger release, currently developed LLH‐driven CO2 release method not only offers a promising solution to the heat‐insulating nature of MOFs, but also demonstrates a potentially low energy method to remotely regenerate MOF adsorbents given the utilization of naturally abundant visible light as efficient stimulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.