Abstract

Light-stimulated synaptic devices are promising candidates for the development of artificial intelligence systems because of their unique properties, which include broad bandwidths, low power consumption, and superior parallelism. The key to develop such devices is the realization of photoelectric synaptic behavior in them. In this work, visible-light-stimulated synaptic transistors based on CdSe quantum dot (CdSe QD)/amorphous In–Ga–Zn–O hybrid channels are proposed. This design can not only improve the charge separation efficiency of the photogenerated carriers, but also can induce delayed decay of the photocurrent. The improved charge separation efficiency enhances the photoelectric properties significantly, while the delayed decay of the photocurrent led to the realization of photoelectric synaptic behaviors. This simple and efficient method of fabricating light-stimulated phototransistors may inspire new research progress into the development of artificial intelligence systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.