Abstract

TiO(2) sensitized by derivatized ruthenium bipyridyl complexes has been intensively investigated as a tool to utilize visible light. This article describes an alternative approach to attaching ruthenium complex sensitizers at the TiO(2)/H(2)O interface, which is a much simpler and more efficient way to produce hydrogen. The surface of TiO(2) particles are simply coated with perfluorosulfonate polymer (cation-exchange resin: Nafion), and then Ru(bpy)(3)(2+) (as a cationic form), whose bipyridyl ligands are not functionalized with carboxylic acid groups, are bound within the Nafion layer through electrostatic attraction. The visible-light-induced production of H(2) on Nf/TiO(2) using simple Ru(bpy)(3)(2+) as a sensitizer is far more efficient than that on Ru(dcbpy)(3)-TiO(2), upon which many sensitized photoelectrochemical conversion systems are based. Effects of various experimental parameters such as pH, concentration of Ru(bpy)(3)(2+), Nafion loading, and the kind of TiO(2) were investigated. Under optimized conditions, the H(2) production rate was about 80 mumol/h, which corresponds to an apparent photonic efficiency of 2.6%. The roles of the Nafion layer on TiO(2) in the sensitized H(2) production are proposed to be twofold: to provide binding sites for cationic sensitizers and to enhance the local activity of protons in the surface region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call