Abstract
Recently, the process by which energy is transferred from photoexcited semiconductor nanocrystals, called quantum dots (QDs), to other semiconductors has attracted much attention and has potential application in solar energy conversion (i.e., QD-sensitized solar cells). Sensitization of wide band gap polyoxometalates (POMs) to visible light by using CuInS2 QDs dispersed in an organic solution is demonstrated herein. Photoluminescence quenching and lifetime studies revealed efficient electron transfer from the CuInS2 QDs to POMs, such as SiW12 O40 and W10 O32 , that were hybridized with a cationic surfactant. CuInS2 QDs function as an antenna that absorbs visible light and supplies electrons to the POMs to enable certain photocatalytic reactions, including noble-metal-ion reduction. The photoenergy storage capabilities of the QD-POM system, in which electrons photogenerated in QDs by visible-light excitation are trapped and accommodated by POMs to form reduced POM, are also demonstrated. Electrons stored in the POM can be later discharged through reductive reactions, such as oxygen reduction, in the dark.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.