Abstract

Various cation and nitrogen doped and codoped TiO2 photocatalysts, such as N–TiO2, Pt–TiO2, N–Fe–TiO2, N–Ni–TiO2, N–Ag–TiO2 and N–Pt–TiO2, were prepared by an acid-catalysed sol–gel process. The photocatalysts were characterised by X-ray diffraction (XRD), nitrogen adsorption–desorption isotherms, UV–visible diffuse reflectance absorption spectroscopy (UV–vis DRS), and X-ray photoelectron spectroscopy (XPS). The activities of the photocatalysts were evaluated in photodegradation of phenol solutions under simulated sunlight irradiations. A negative effect of some transition metals (iron and nickel) on photocatalysis was observed on N-metal codoped TiO2, while enhancements in photocatalysis from noble metals (silver and platinum) were obtained. N–Pt codoped TiO2 showed a higher activity under UV–vis irradiations than Degussa P25, with an enhancement of 5.9times higher. The synergistic effect of N–Pt-codoping was ascribed to the multivalent states of platinum. In addition, photocatalytic activity of N-, Pt-doped and N–Pt-codoped materials were further investigated under visible light irradiations with λ>430nm and λ>490nm. This study therefore demonstrated a promising strategy for design of highly efficient photocatalysts for remediation of aqueous pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.