Abstract

In the present study, we investigated comparatively the role of hexadecyltrimethylammonium bromide (HDTMA) in enhancing the adsorption and photocatalytic activity of BiPO4 coated montmorillonite (M-BiPO4), and BiPO4 coated smectite (S-BiPO4). Montmorillonite has large interlayer spacing compared to smectite. Firstly, it was found that the simple hybridization of BiPO4 with clays led to enhance the visible light response. The co-fixation of BiPO4 and HDTMA on clay supports reduces the BET specific surface area, but it enhances significantly the adsorption ability. XPS analysis shows a notable Bi4f high resolution peak shifting in the case of HDTMA-S-BiPO4, while such a shifting was not observed in terms of HDTMA-M-BiPO4. Regarding the adsorption and photocatalytic tests, at lower concentration of diclofenac (20 ppm), M-BiPO4 was several times more effective than S-BiPO4. However, the coating of clays by BiPO4 and HDTMA showed a different manner, wherein HDTMA-S-BiPO4 achieved an oxidation rate of around 88% under solar light within 90 min at a concentration of 140 ppm of diclofenac. On the contrary, HDTMA-M-BiPO4 shows an oxidation rate of only 22% under the same conditions. It was deduced that the strong surface interactions between HDTMA and BiPO4 coated on smectite can form a strong interfacial bridge which boosts the visible light response and the separation of photogenerated charges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call