Abstract

Photoswitchable polymers are promising candidates for information storage. However, two general problems for photoswitchable polymers used in rewritable optical storage are photobleaching and inefficient switching processes in solid state. To overcome both of these obstacles, we demonstrate the synthesis of a new visible-light-switchable azobenzene-containing polymer (azopolymer) with nonstackable azo chromophores for reversible and stable information storage. The new azopolymer (PmAzo) contains ortho-methoxy-substituted azobenzene (mAzo) groups on the polymer side chains and shows reversible trans-to-cis or cis-to-trans isomerization by using distinct wavelengths of visible light. PmAzo is better suited for reversible optical storage than conventional UV-responsive azopolymers because visible light avoids the photodamage caused by UV light. Additionally, mAzo groups do not π–π stack in solid state, making photopatterning of PmAzo fully reversible. Moreover, photoinduced patterns on PmAzo can be stored fo...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call