Abstract

With an attempt to extend the light absorption towards the visible range and inhibit the rapid recombination of excited electrons/holes, a new type photocatalysts, cadmium sulfide intercalated zirconium–titanium phosphate (CdS–ZTP) was synthesized. The photocatalysts were characterized by small angle X-ray diffraction studies (SAXS), N 2 adsorption–desorption studies, diffused reflectance UV–vis (DRUV–vis) spectroscopic analysis, photoluminescence studies (PL), scanning electron microscopic/energy dispersive spectroscopic (SEM/EDS), X-ray photoelectron spectroscopic (XPS) studies etc. The samples exhibit a unique property of optical absorption in UV and visible regions with a wavelength, λ ≤ 450 nm followed by a clear long tail up to 700 nm. The pillared materials showed excellent activity for UV–visible light driven hydrogen production from photocatalytic splitting of water without using any co-catalyst. The photocatalytic activity of this cadmium sulfide pillared catalyst, as well as that of neat cadmium sulfide powder, was monitored for the visible light-induced evolution of hydrogen from water in the presence of hole scavenger, sulfide (S 2−).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.