Abstract

The intramolecular aromatic ring systems migration reactions, namely Smiles rearrangement is a powerful method for (hetero) aryl group functionalization. It can be employed as a complementary strategy to arene functionalization, and has found its broad applications in synthetic chemistry. After the initial documentation in 1894 this chemistry was intensively investigated by Smiles. In its classical pathway, the migration of aromatic ring system takes place ipso nucleophilic substitution. Accordingly, the migrating (hetero) aryl groups are highly electronic and steric-dependent. Moreover, as new reaction modes reported, advances have been made in the areas for arene C-C, C-N and C-O bond formation and radical triggered Smiles rearrangement has also enriched migrating units. Recently, there has been a rapid growth in the transformation induced by visible-light photocatalysis. Harnessing visible light as the energy source for chemical reactions usually serves as an environmentally benign alternative in comparison with classical radical pathway. Furthermore, photoredox-induced rearrangement represents a valuable and efficient approach for facilitating both the radical-based bond-cleaving and bond-forming events in a single step. It has become an effective tool for both synthesis and late stage modification of bio-active molecules. The last five years has witnessed many important advances in exploring photo-induced Smiles reactions, which make this classic reaction regained its attention. Significant progress has been made for expediting the generation of N-centered, C-centered and O-centered from a variety of precursors before single electron transfer rearrangement. This powerful synthetic platform for efficient promotes (hetero) aromatic group construction under mild reaction conditions, and has become a useful method for the synthesis and late stage functionalization of pharmaceutically interest products. In this perspective, we focus on visible light induced Smiles chemistry, which the major breakthroughs are classified based on migrating-induced radical species, and their synthetic applications are discussed briefly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.