Abstract

Novel SnS/BiOI heterostructures with excellent photocatalytic degradation of methyl orange were successfully prepared by a facile hydrothermal-coprecipitation method. The maximum methyl orange degradation activity under visible light irradiation (λ>400nm) was found for 10wt% SnS/BiOI. The composite also showed better stability and good recyclability compared to BiOI. The energy band diagram and band offsets from X-ray photoelectron spectroscopy investigation indicated that the novel composite was a type-II heterojunction where the photogenerated electron–hole can be efficiently separated and transferred. Results from UV–vis DRS, PL-TA and photocurrent response measurement suggested that the improved photodegradation efficiency of the SnS/BiOI heterojunction was mainly attributed to enhanced light absorption capability, strong ability to generate and transfer photoexcited charge carriers and high active species formation. Additionally, radical scavenging experiments demonstrated that holes and superoxide radicals are dominant active species, whereas hydroxyl radicals are of secondary importance in this system. A plausible photocatalytic mechanism of the SnS/BiOI composite was also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.