Abstract
High-entropy oxides (HEOs), as multi-component ceramics with high configurational entropy, have been of recent interest due to their attractive properties including photocatalytic activity for H2 production and CO2 conversion. However, the photocatalytic activity of HEOs is still limited to ultraviolet light. In this study, to achieve visible-light-driven photocatalysis, 10 different heterojunctions were simultaneously introduced in the Ti-Zr-Nb-Ta-W-O system. The oxide, which was synthesized by a high-pressure torsion method and oxidation, successfully produced oxygen from water under visible light without co-catalyst addition. The photocatalytic performance was attributed to high visible-light absorption, low bandgap, appropriate band structure, presence of multiple heterojunctions and accordingly easy electron-hole separation and slow recombination. These results not only show the potential of high-entropy oxides as new visible-light-active photocatalysts, but also introduce the multiple-heterojunction introduction as a strategy to achieve photocatalysis under visible light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology A: Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.