Abstract

Ultrafast C-H bond activation and functionalization in confinement using visible light will enable engineering chemical reactions with extraordinary speed and selectivity. To provide a transition metal-free route, here we demonstrate C-H bond activation reactions on poly-aromatic hydrocarbons (PAH) in all-organic cationic nanocage ExBox4+ for the first time. Visible light excitation in the host-guest charge transfer (CT) state allows the formation of oxidized photoproducts with high selectivity. Mechanistic understanding of this CT-mediated photoreaction using femtosecond broadband transient absorption revealed a few ∼100 ps timescale for C-H bond breaking on the attached -CH3 group via sequential electron transfer and proton transfer steps. We envision that our photosensitizer-free method will open up new avenues to pursue organic reactions using cavities that could serve both as photoredox catalysts and hosts for reactive reaction intermediates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call