Abstract

Considering that stoichiometric borane and oxidant are required in the classical alkene anti-Markovnikov hydration process, it remains appealing to achieve the transformation in a catalytic protocol. Herein, a visible-light-mediated anti-Markovnikov addition of water to alkenes by using an organic photoredox catalyst in conjunction with a redox-active hydrogen atom donor was developed, which avoided the need for a transition-metal catalyst, stoichiometric borane, as well as oxidant. Both terminal and internal olefins are readily accommodated in this transformation to obtain corresponding primary and secondary alcohols in good yields with single regioselectivity. This procedure can be scaled up to gram scale with a 230 turnover number based on photocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.