Abstract

ABSTRACT The ever-increasing energy demand has resulted in an increase in CO2 emissions and global warming. Photocatalytic reduction of CO2 to methanol, which is considered to be the next generation alternate fuel is gaining interest to combat global warming and to move towards a methanol economy. The present work focuses on photocatalytic reduction of CO2 using Polyaniline/CuO (PANI/CuO) nanocomposite to methanol, formic acid, and formaldehyde under visible light irradiation. CuO nanoparticles were synthesised using the aqueous extract of Tectona grandis (teak) leaves and further used in the synthesis of PANI/CuO nanocomposite with different CuO loading. PANI/CuO nanocomposite exhibited visible light activity in the reduction of CO2 to form methanol, formic acid, and formaldehyde. Photocatalytic reduction of CO2 with PANI/CuO nanocomposite containing 13.7% by weight of CuO resulted in a maximum yield of methanol. The band gap energy of the nanocomposite was found to be 2.28 eV, thus confirming its good visible light activity and the PANI-CuO heterojunction-based mechanism of photocatalysis is proposed. The synthesis of PANI-CuO photocatalyst uses CuO which is synthesised by an eco-friendly route with the utilisation of teak leaves, a timber industry waste and thus it can serve as a greener catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call