Abstract

In this work, CdS nanoparticles were grown on top of a hematite (α-Fe2O3) film as photoanodes for the photoelectrochemical water splitting. Such type of composition was chosen to enhance the electrical conductivity and photoactivity of traditionally used bare hematite nanostructures. The fabricated thin film was probed by various physicochemical, electrochemical, and optical techniques, revealing high crystallinity of the prepared nanocomposite and the presence of two distinct phases with different band gaps. Furthermore, photoassisted water splitting tests exhibit a noteworthy photocurrent of 0.6 mA/cm2 and a relatively low onset potential of 0.4 V (vs reversible hydrogen electrode) for the composite electrode. The high photocurrent generation ability was attributed to the synergistic interplay between conduction and valence band (VB) levels of CdS and α-Fe2O3, which was further interpreted by J–V curves. Finally, electrochemical impedance spectroscopy investigation of the obtained films suggests that the photogenerated holes could be transferred from the VB of α-Fe2O3 to the electrolyte more efficiently in the hybrid nanostructure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call