Abstract

Highly efficient, visible light induced photocatalytic H(2) production was achieved over a TiO(2) system sensitized by binuclear Ru(II) bipyridyl (bpy) complex [Ru(2)(bpy)(4)(BL)](ClO(4))(2) (BL = bridging ligand) without Pt loading, which is almost unaffected by pH in aqueous solution in the wide range from pH 5.00 to 10.50, although the dye molecules can only be loosely attached to TiO(2) due to the absence of terminal carboxyl groups. The photocatalyst shows remarkable long-term stability and reproducibility of H(2) evolution even after exchanging the aqueous triethanolamine solution. The amount of H(2) evolved over 100 mg of photocatalyst in 27 h of irradiation corresponds to a turnover number of about 75,340, and the apparent quantum yields are estimated to be 16.8 and 7.3 % under 420 and 475 nm monochromatic light irradiation, respectively. A comparative study shows that the loosely attached dye [Ru(2)(bpy)(4)(BL)](ClO(4))(2) has higher photosensitization efficiency than tightly linked dyes with terminal carboxyl groups, such as [Ru(2)(dcbpy)(4)(BL)](ClO(4))(2) and N719. It can be rationalized by their different coordination, physicochemical, electron-injection, and back-transfer properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.