Abstract

Conversion of aqueous arsenite [As(III)] to less toxic arsenate [As(V)] is a critical step for the arsenic pollution remediation. In this study, Ag2O/TiO2 composites synthesized via the pH-induced precipitation method were employed into the photocatalytic oxidation of As(III) under visible light irradiation. X-ray diffraction, transmission electron microscope and X-ray photoelectron spectroscopy analysis verified the formation of Ag2O/TiO2 heterostructures. Compared to pure Ag2O and TiO2, the 30% Ag2O/TiO2 composite exhibited much higher photochemical reactivities for the oxidation of As(III) under visible light irradiation. Under the optimal conditions [pH = 4.0, the photocatalyst dosage being 0.3 g L−1 and initial As(III) concentration being 10 mg L−1], the oxidation and removal percent of As(III) was 60.7% and 83.0% after reaction for 120 min, respectively. Moreover, the formation of Ag(0) over the surface of Ag2O by photo-induced electrons contributed to the high stability of Ag2O/TiO2 composite. It was also found that photo-generated holes and superoxide radicals played the predominant roles in the As(III) oxidation. The improved photocatalytic activities were attributed to the formation of the hetero-junctions between Ag2O and TiO2, the strong visible light absorption, and the high separation efficiency of photo-generated electron-hole pairs resulted from the Schottky barriers at the Ag-Ag2O interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.