Abstract

Hydrogen production was accomplished under visible-light irradiation by using a system consisting of a biomolecule (chlorophyll a), methylviologen, ethylenediaminetetraacetic acid disodium salt and Pt-loaded poly(l-glutamate) (Poly(Glu)), in aqueous decylammonium chloride (DeAC) solution. Spectroscopic studies revealed that chlorophyll a is solubilized in the hydrophobic clusters of Pt-loaded Poly(Glu)-decylammonium chloride. In the Poly(Glu)-DeAC complex, the electron transfer occurred between chlorophyll a and methylviologen leading to hydrogen production. The most noticeable result is that the rate of hydrogen evolution depends on the change from the random coil to the alpha-helix in conformation of Poly(Glu) induced by the cooperative binding with DeAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.