Abstract

Hydrogen (H2)-free and poison (lead and quinoline)-free semihydrogenation of alkynes to cis-alkenes under gentle conditions is one of the challenges to be solved. In this study, a titanium(IV) oxide photocatalyst having two functions (visible light responsiveness and semihydrogenation activity) was prepared by modification with 2,3-dihydroxynaphthalene (DHN) and a copper (Cu) co-catalyst, respectively. The photocatalyst (DHN/TiO2-Cu) showed high performance for diastereoselective semihydrogenation of alkynes to cis-alkenes in water-acetonitrile solution under visible light irradiation without the use of H2 and poisons. Alkynes having reducible functional groups were converted to the corresponding alkenes with the functional groups being preserved. The addition of water to acetonitrile changed the amount of alkynes adsorbed on the photocatalyst, which was a decisive factor determining the rate of hydrogenation. A relatively large apparent activation energy, 27 kJ mol−1, was obtained by a kinetic study, indicating that the rate-determining step of this reaction was not an electron production process but a thermal catalytic semihydrogenation process over the Cu co-catalyst. Semihydrogenation and hydrogen evolution occurred competitively on Cu metals and the former became predominant at slightly elevated temperatures, which is discussed on the basis of the kinetic parameters of two reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.