Abstract

Population aging and the development of transcatheter aortic valve replacement boost the implantation of bioprosthetic heart valves (BHVs) in patients worldwide. However, the traditional glutaraldehyde cross-linked BHVs fail within 12-15 years mainly due to leaflet tear and calcification defects. In this study, a novel visible light-induced cross-linking of the porcine pericardium (PP) was realized by the photo-oxidation of the furfuryl-modified PP in the presence of Rose Bengal. The resulting material showed comparable collagen stability with the glutaraldehyde cross-linked PP and appropriate biomechanical properties such as tensile strength, modulus, and elongation, suggesting that this material could meet the general requirement for BHVs. Besides, this cross-linked PP showed significantly improved cytocompatibility compared with the Glut-cross-linked PP, with no cytotoxicity to L929 cells and the ability to support HUVECgrowth. Meanwhile, this material showed superior anti-tearing performance and much less calcification than the Glut-cross-linked PP in hope of reducing the risk of BHV failure. Considering these results, the visible light-induced cross-linking method proposed in this study could provide a promising way to construct a biocompatible and robust biomaterial for the fabrication of the BHV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call