Abstract
Protons from water are reduced by a catalytic system composed of a heteroleptic iridium(III) photosensitizer [Ir(ppy)2(bpy)]+, platinum catalyst, and sacrificial reductant. The hydrogen quantum yield reaches 0.26 in this study, which proceeds via reductive quenching of the excited photosensitizer by triethanolamine. This simplified approach allows the characterization of degradation products that are otherwise obscured in more complex systems. A novel 16-well setup for parallel kinetic analysis of H2 evolution enables high-throughput screening of reaction conditions and quantization of the decaying reaction rate. DFT calculations rationalize the differences between this and previous studies on tris-diimine ruthenium(II) photosensitizers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.