Abstract

A new concept of a tunneling oxide-free nonvolatile memory device with a deep trap interface floating gate is proposed. This device demonstrates a high on/off current ratio of 107 and a sizable memory window due to deep traps at the interface between the channel and gate dielectric layers. Interestingly, irradiation with 400 nm light can completely restore the program state to the initial one (performing an erasing process), which is attributed to the visible light-sensitive channel layer. Device reproducibility is enhanced by selectively passivating shallow traps at the interface using in situ H2 plasma treatment. The passivated memory device showshighly reproducible memory operation and on-state current duringretention baketests at 85 °C. One of the most significant advantages of this visible light-erasable oxide field-effect transistor-based nonvolatile memory is its simple structure, which is free from deterioration due to the frequent tunneling processes, as compared to conventional nonvolatile memory devices with tunneling oxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.