Abstract
The catalytic hydrogenation activity of the readily prepared, coordinatively saturated cobalt(I) precatalyst, (R,R)-(iPrDuPhos)Co(CO)2H ((R,R)-iPrDuPhos = (+)-1,2-bis[(2R,5R)-2,5-diisopropylphospholano]benzene), is described. While efficient turnover was observed with a range of alkenes upon heating to 100 °C, the catalytic performance of the cobalt catalyst was markedly enhanced upon irradiation with blue light at 35 °C. This improved reactivity enabled hydrogenation of terminal, di-, and trisubstituted alkenes, alkynes, and carbonyl compounds. A combination of deuterium labeling studies, hydrogenation of alkenes containing radical clocks, and experiments probing relative rates supports a hydrogen atom transfer pathway under thermal conditions that is enabled by a relatively weak cobalt–hydrogen bond of 54 kcal/mol. In contrast, data for the photocatalytic reactions support light-induced dissociation of a carbonyl ligand followed by a coordination-insertion sequence where the product is released by combination of a cobalt alkyl intermediate with the starting hydride, (R,R)-(iPrDuPhos)Co(CO)2H. These results demonstrate the versatility of catalysis with Earth-abundant metals as pathways involving open- versus closed-shell intermediates can be switched by the energy source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.