Abstract

We report the fabrication, chemical, optical, and photoluminescence characterization of amorphous silicon-rich oxynitride (SiOxNy:H) thin films by plasma-enhanced chemical-vapor deposition. The film compositions were followed by changes in the refractive index. X-ray photoelectron and Fourier transform infrared spectroscopy indicate that the chemical composition is dominated by silicon suboxide bonding with N present as a significant impurity. A broad tunable photoluminescence (PL) emission is visible at room temperature with a quantum efficiency of 0.011% at peak energies to 3.15 eV. The radiative lifetimes are less than 10 ns, and there is nearly no temperature dependence of the PL intensity down to 80 K. Ex situ annealing at temperatures above 850 °C results in an increase in PL efficiency by nearly three orders of magnitude, and the PL intensity is independent of the annealing ambient. The PL results are remarkably similar to literature results in oxidized porous silicon and oxidized nanocrystalline Si thin films, and suggest that the radiative center is due to the defect structure in the silicon suboxide moiety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call