Abstract
ABSTRACTA new Cu-doped SrTiO3 photocatalyst was synthesized and characterized for uses in the visible-light photocatalytic production of hydrogen from water. The photocatalytic activity was assessed based on the characterization of the photocatalysts (band gap energy, surface area, crystallinity, and morphology) and the effects of varying together the calcination temperature, the Cu:Sr mole ratio, and the photocatalyst loading amount. It was determined that the amount of hydrogen evolved was largely dictated by the amount of Cu dopant present in the photocatalysts. The created Box Behnken Design optimization scenarios suggested the conditions: 850°C, 0.01 Cu:Sr, 0.33 g loading as the optimal conditions for maximum hydrogen production holding all studied factors in range, and the conditions: 850°C, 0.01 Cu:Sr, 0.21 g loading as the optimal conditions for the maximum hydrogen production while minimizing Cu dopant and photocatalyst loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.