Abstract

Waterborne pathogenic viruses, with an ultra-small particle size of tens of nanometers, a high risk of causing disease, and strong persistence in natural environment and water treatment processes, pose a serious threat to human health. Here, a new class of metal-free heterojunction photocatalysts was developed by integrating oxygen-doped graphitic carbon nitride microspheres (O-g-C3N4) with hydrothermal carbonation carbon (HTCC) via a facile low-temperature solvothermal-hydrothermal approach for the inactivation of human adenovirus type 2 (HAdV-2). The sample of O-g-C3N4/HTCC-2 with a uniform coverage of HTCC, strong visible light absorption, and a narrow band gap exhibited the higher virucidal activity against highly resistant HAdV-2 under visible light irradiation, compared to HTCC, bulk g-C3N4, and O-g-C3N4. A titer of 105 MPN/mL viruses was completely inactivated within 120 min of photocatalysis, and viral inactivation efficiency was enhanced with the increase of water temperature from 4 to 37 °C, the decrease of pH from 8 to 5, or the presence of salinity (NaCl) and hardness (Ca2+). Furthermore, the effectiveness for HAdV-2 inactivation in real drinking water and excellent photocatalyst stability of O-g-C3N4/HTCC-2 highlighted its promising potential for water disinfection in practice. The mechanism of enhanced virucidal performance of O-g-C3N4/HTCC was revealed, and it was because of enhanced charge separation by the formation of heterojunction in the photocatalyst. Besides, Z-scheme heterojunction was proposed to enable the production of OH as a strong antiviral agent in photocatalysis, in contrast to Type II heterojunction. Interestingly, OH rather than O2− dominated HAdV-2 inactivation, and it led to the rupture, distortion, and hole formation of viral capsid. In addition to the excellent photocatalytic performance of O-g-C3N4/HTCC for HAdV-2 inactivation, the photocatalyst exhibited negligible toxicity to a human cell line, suggesting the material is safe for water purification. Our study not only highlights the promising future of an emerging metal-free visible-light-responsive heterostructure of O-g-C3N4/HTCC for viral disinfection and an effective, sustainable, and safe water purification process, but also sheds light on the key photocatalyst properties and mechanisms that improve photocatalytic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call