Abstract
In this study, we constructed an innovative photo-electrocatalysis-assisted peroxymonosulfate (PEC/PMS) system to degrade pharmaceuticals and personal care products (PPCPs). A hollow-structured photoanode (i.e., Pt@CeO2@MoS2) was specifically synthesized as a photoanode to activate PMS in the PEC system. As proof of concept, the Pt@CeO2@MoS2 photoanode exhibited superior degradation performance toward carbamazepine (CBZ) with PMS assistance. Specifically, the kinetic constant of PEC/PMS (k = 0.13202 min−1) could be enhanced about 87.4 times compared to that of the PEC system (0.00151 min−1) alone. The PMS activation mechanism revealed that the synergistic effect between the hollow material and the change of surface valence states (Ce3+ to Ce4+) and (Mo4+ to Mo6+) contribute to enhancing the degradation efficiency of the visible-light-driven PEC/PMS process. The scavenger testing and EPR showed that 1O2, O2•−, SO4•− and •OH play dominant roles in the SR-AOPs. Furthermore, the applicability of Pt@CeO2@MoS2 used in SR-AOPs was systematically investigated regarding of the reaction parameters and identification of intermediates and dominant radicals as well as the mineralization rate and stability. The outcomes of this study can provide a new platform for environmental remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.