Abstract

In this work, a novel sensing platform based on visible light driven biofuel cell (BFC) has been facilely designed for sensitive detection of prostate-specific antigen (PSA) with the photo-response bioanode, realizing the dual route energy conversion of light energy and chemical energy to electricity. The hierarchical branched TiO2 nanorods (B-TiO2 NRs) decorated with CdS quantum dots (QDs) act as the substrate to confine glucose dehydrogenase (GDH) for the visible light driven glucose oxidation at the bioanode. Three dimensional flowers like hierarchical carbon/gold nanoparticles/bilirubin oxidase (3D FCM/AuNPs/BOD) bioconjugate served as biocatalyst for O2 reduction at the biocathode. With an increase in the concentration of PSA, the amount of BOD labels on biocathode increases, thus leading to the higher current output of the as-proposed visible light driven BFC. Based on this, this sensing platform provide great performance in sensitivity and specificity, increasing linear detection range from 0.3pgmL−1 to 7μgmL−1 with a detection limit of 0.1pgmL−1. Most importantly, our new sensing strategy provided a simple and inexpensive sensing platform for tumor markers detection, suggesting its wide potential applications for clinical diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.