Abstract

This research was aimed to prepare a magnetically photocatalyst enabling to degrade pharmaceutical wastewater and detoxification of pollutant such as naproxen, by visible light irradiation. The nano-sized NiS and NiO photocatalysts exhibit higher reactivity than their microsized counterparts, but separation of the used photocatalyst from the degradation solution is hard and imperfect. To remove this difficulty, magnetic polypyrrole core-shell (Fe3 O4 @PPY) was synthesized and employed as catalyst support. The magnetization property of the synthesized photocatalysts measured by VSM technique indicated that the photocatalysts were sufficiently magnetized to be readily separated from degradation solution by use of external magnetic field. The DRS study showed that the band gap of the photocatalysts shifted to lower energy after immobilization on the support materials leading to higher degradation efficiency. The optimal efficiency was obtained with the catalysts loaded with 50% of NiO and 50% of NiS. The augmenting effect of H2 O2 and the inhibition influence of some organic and inorganic compounds on the degradation process were studied. Regeneration of the used photocatalyst was performed by heat treatment, and the catalyst treated at 400°C retained most of its initial capacity. The degradation capacity was kinetically fast, and the equilibrium was attained within 30min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call