Abstract
In this paper, we experimentally demonstrate for the first time an on off keying modulated visible light communications system achieving 170 Mb/s using an artificial neural network (ANN) based equalizer. Adaptive decision feedback (DF) and linear equalizers are also implemented and the system performances are measured using both real time (TI TMS320C6713 digital signal processing board) and offline (MATLAB) implementation of the equalizers. The performance of each equalizer is analyzed in this paper using a low bandwidth (4.5 MHz) light emitting diode (LED) as the transmitter and a large bandwidth (150 MHz) PIN photodetector as the receiver. The achievable data rates using the white spectrum are 170, 90, 40 and 20 Mb/s for ANN, DF, linear and unequalized topologies, respectively. Using a blue filter to isolate the fast blue component of the LED (at the cost of the power contribution of the yellowish wavelengths) is a popular method of improving the data rate. We further demonstrate that it is possible to sustain higher data rates from the white light with ANN equalization than the blue component due to the high signal-to-noise ratio that is obtained from retaining the yellowish wavelengths. Using the blue component we could achieve data rates of 150, 130, 90 and 70 Mb/s for the same equalizers, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.