Abstract
The disintegration of natural water sources signals out the scarcity of adam’s ale and will be hurdle for the human physical state. So it is necessary to decrease waste loads and hence pressure on the ecology for the sustainability of fishery and dye industry. Herein, TiO2 nanoparticles doped with Sn and F are synthesized and the influence of simultaneous doping on the optical, surface morphological, structural, photocatalytic and antibacterial activities are investigated. Doping of TiO2 with Sn and F suppress the growth of both anatase and rutile phase because of the dissimilar boundaries. All the prepared doped and undoped samples are found to possess tetragonal structure. The influence of F and Sn in TiO2 lattice is recognized with the XRD and FT-IR spectra of the prepared particles The size of the obtained nanoparticles decreases as increasing concentration of F and Sn. TiO2 is showing the presence of spherical and ellipsoidal nanoparticles whereas doped samples showing nanobulk, pentagons and rods. The absorption edge of the doped samples are blue shifted with increasing concentration of dopants indicates the control of optical absorption property of TiO2. The visible light assisted photocatalytic degradation of fish processing waste water by doped and undoped samples are found to be established as 0.0076/min and 0.0071/min respectively. Visible light assisted degradation of commercially available dyes and fish processing waste water is assessed. Methyl blue showed enhanced photocatalytic activity under visible light irradiation compared to Methyl orange. It is observed that all the prepared particles show good antimicrobial activity against Staphylococcus aureus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.