Abstract
The present work described a unique approach for CO2 reduction to methanol along with the oxidation of various amines to the corresponding imines and photocatalytic H2O2 production from H2O and molecular O2 using a heterojunction photocatalyst made up of ZnIn2S4/Ni12P5/g-C3N4(NCZ) under visible light irradiation. The photocatalysts were synthesized via a high-temperature treatment of nickel and phosphorous precursors with g-C3N4 followed by decoration of ZnIn2S4. The synthesized photocatalysts were characterized using various spectroscopic and microscopic techniques. The density functional theory (DFT) studies suggested the participation of the valence band maximum (VBM) from Ni12P5 and the conduction band maximum (CBM) from ZnIn2S4 in the ternary NCZ heterojunction. The ternary composite exhibited superior photocatalytic activity compared to that of its individual components due to the formation of a heterojunction, thereby enhancing the transfer efficiency of electrons from the conduction band of g-C3N4 to that of ZnIn2S4 using Ni12P5 as an electron bridge. Moreover, the reduced band gap of the ternary heterojunction played a key role in its higher efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.