Abstract

Herein, we report the preparation and characterizations of the sulfur (S)-doped TiO2 nanotube (TONT) arrays prepared by a sulfurization process of TONT arrays via electrochemical anodization on a Ti substrate with pure TONT arrays. The S-doped TONT arrays were prepared with the annealing temperature from 450 to 550 °C under H2S gas for 10 min, and these reaction conditions corresponded to no modification of the morphological features relative to that of the TONT arrays. Furthermore, the 500 °C annealed S-doped TONT arrays showed enhanced visible light absorption and high electric conductivity, thus resulting in the most improved photocurrent density (2.92 mA cm–2 at 1.0 V vs sat. Ag/AgCl) in the 0.1 M KOH solution as compared with that (0.965 mA cm–2 at 1.0 V vs sat. Ag/AgCl) of TONT arrays. In addition, the incident photon-to-electron conversion efficiency (IPCE) of S-doped TONT arrays exhibited approximately 43% in the UV region, whereas TONT arrays had 32% IPCE in the UV region. In addition, the small ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call