Abstract
We report that self-focusing occurs with simultaneous self-inscription of a cylindrical waveguide when 514.5-nm light from a cw argon-ion laser propagates in a solgel-derived silica methacrylate hybrid glass planar waveguide. Spatially localized free-radical polymerization of methacrylate substituents is initiated in the path of the guided wave. This causes intensity-dependent refractive-index changes that lead to self-lensing and focusing. A channel waveguide evolves in the matrix, which supports fundamental and higher-order optical modes and suppresses diffraction of the beam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.