Abstract

This work describes a simple and novel ceramic processing technique to form periodic ordered structures in ceramic materials with a uniform pore size distribution. This material shows photonic gaps at visible/near‐IR wavelengths. Monodisperse colloidal polystyrene microspheres are self‐organized into a crystalline structure of close‐packed spheres in a suspension of nanocrystalline titania. The nanoparticle titania fills the intersphere region simultaneously during colloidal crystallization. Removal of the polystyrene microspheres by calcination at a temperature of 520°C results in a periodic porous structure with a high refractive index background material. Crystals having ordered regions, a few millimeters across with typical grain sizes of 50–70 μm, are grown as thin films on substrates including glass and silicon. Optical reflectivity measurements indicate peaks at the stop band wavelengths that scale with the pore size. Visual inspection and optical microscopy reveal uniform colored regions for crystals with periodicity comparable to visible wavelengths. Despite the presence of cracks resulting from drying and heat treatment as well as numerous grain boundaries, optical characterization clearly demonstrates a photonic band gap. Reflectance peaks due to a pseudogap can be shifted by application of high pressure. In the following sections we will describe the experimental procedure and discuss optical reflectance and transmission measurements that can reveal information about the crystals, namely, the lattice constant, the refractive index, and the filling fraction of the background material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.