Abstract

AbstractLanthanide‐doped luminescent nanoparticles are an appealing system for nanothermometry with biomedical applications due to their sensitivity, reliability, and minimal invasive thermal sensing properties. Here, four unique hybrid organic–inorganic materials prepared by combining β‐NaGdF4 and PMOs (periodic mesoporous organosilica) or mSiO2 (mesoporous silica) are proposed. PMO/mSiO2 materials are excellent candidates for biological/biomedical applications as they show high biocompatibility with the human body. On the other hand, the β‐NaGdF4 matrix is an excellent host for doping lanthanide ions, even at very low concentrations with yet very efficient luminescence properties. A new type of Er3+–Yb3+ upconversion luminescence nanothermometers operating both in the visible and near infrared regime is proposed. Both spectral ranges permit promising thermometry performance even in aqueous environment. It is additionally confirmed that these hybrid materials are non‐toxic to cells, which makes them very promising candidates for real biomedical thermometry applications. In several of these materials, the presence of additional voids leaves space for future theranostic or combined thermometry and drug delivery applications in the hybrid nanostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.