Abstract

The photoisomerization properties of azo derivatives have been widely used in the fields of materials and biology. One serious restriction to the development of functional azo-based materials is the necessity to trigger switching by UV light, which damage the corresponding surfaces and penetrate only partially through the matter. Therefore, developing the visible and near-infrared light activated azo switches can solve this problem. This review provides a summary of molecular design strategies for driving the isomerization of azo derivatives with visible light and near-infrared light: (1) smart design directly excited by visible light, (2) the addition of upconversion nanoparticles, (3) the employment of two-photon absorption, (4) indirect excitation in combination with metal sensitizer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.