Abstract

The increasing amount of space debris in recent years has greatly threatened space operation. In order to ensure the safety level of spacecraft, space debris perception via on-orbit visual sensors has become a promising solution. However, the perception capability of visual sensors largely depends on illumination, which tends to be insufficient in dark environments. Since the images captured by visible and infrared sensors are highly complementary in dark environments, a convolutional sparse representation-based visible and infrared image fusion algorithm is proposed in this paper to expand the applicability of visual sensors. In particular, the local contrast measure is applied to obtain the refined weight map for fusing the base layers, which is more robust in a dark space environment. The algorithm can settle two significant problems in space debris surveillance, namely, improving the signal-noise ratio in a noise space environment and preserving more detailed information in a dark space environment. A space debris dataset containing registered visible and infrared images has been purposely created and used for algorithm evaluation. Experimental results demonstrate that the proposed method in this paper is effective for enhancing image qualities and can achieve favorable effects compared to other state-of-the-art algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.