Abstract

Erbium-doped films were grown on sapphire and silicon substrates by reactive sputtering, with different Er concentrations in the film. GaN films deposited at 800 K were determined to be polycrystalline by x-ray diffraction analysis, and retained their polycrystalline structure after annealing in nitrogen at 1250 K. The Er-doped films showed optical transmission beginning at about 360 nm, and the Er dose and film purity were determined with Rutherford backscattering spectroscopy. Photoluminescence and cathodoluminescence spectroscopy showed sharp emission lines corresponding to Er 3+ intra 4fn shell transitions over the range from 9 - 300 K. At above-bandgap optical and electron excitation, the 4S3/2 and 4F9/2 transition dominate, and are superposed on the "yellow band" emission. The infrared emission line at 1543 nm, corresponding to the Er 4I13/2 to 4I5/2 transition is also observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.