Abstract

Due to the clinically and technically demanding nature of breast x-ray imaging, mammography still remains one of the few essentially film-based radiological imaging techniques in modern medical imaging. There are a range of possible benefits available if a practical and economical direct digital imaging technique can be introduced to routine clinical practice. There has been much debate regarding the minimum specification required for direct digital acquisition. One such direct digital system available is computed radiography (CR), which has a modest specification when compared with modern screen-film mammography (SFM) systems. This paper details two psychophysical studies in which the detection of simulated microcalcifications with CR has been directly compared to that with SFM. The first study found that under scatter-free conditions the minimum detectable size of microcalcification was approximately for both SFM and CR. The second study found that SFM had a 4.6% higher probability of observers being able to correctly identify the shape of diameter test details; there was no significant difference for either larger or smaller test details. From the results of these studies it has been demonstrated that the modest specification of CR, in terms of limiting resolution, does not translate into a dramatic difference in the perception of details at the limit of detectability. When judging the imaging performance of a system it is more important to compare the signal-to-noise ratio transfer spectrum characteristics, rather than simply the modulation transfer function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call