Abstract

Detecting epileptic seizure from EEG signals constitutes a challenging problem of significant importance. Combining adaptive optimal kernel time-frequency representation and visibility graph, we develop a novel method for detecting epileptic seizure from EEG signals. We construct complex networks from EEG signals recorded from healthy subjects and epilepsy patients. Then we employ clustering coefficient, clustering coefficient entropy and average degree to characterize the topological structure of the networks generated from different brain states. In addition, we combine energy deviation and network measures to recognize healthy subjects and epilepsy patients, and further distinguish brain states during seizure free interval and epileptic seizures. Three different experiments are designed to evaluate the performance of our method. The results suggest that our method allows a high-accurate classification of epileptiform EEG signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.